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ABSTRACT 
 

The integrity of data in cloud storage is subject to skepticism and scrutiny, as data stored in the cloud can easily be 

corrupted due to the inevitable hardware/software failures and human errors. Therefore, the integrity of cloud data 

should be verified before any data utilization, such as search or computation over cloud data. The traditional 

approach for checking data correctness is to retrieve the entire data from the cloud, and then verify data integrity by 

checking the correctness of signatures or hash values of the entire data. Certainly, this conventional approach is able 

to successfully check the correctness of cloud data. However, the efficiency of using this traditional approach on 

cloud data is in doubt. The main reason is that the size of cloud data is large in general. Downloading the entire 

cloud data to verify data integrity will cost or even waste user amounts of computation and communication 

resources, especially when data have been corrupted in the cloud.  

Keywords: Public Auditing, Privacy Preserving, Shared data, Cloud Computing 

I. INTRODUCTION 

 

Cloud service providers offer users efficient and scalable 

data storage services with a much lower marginal cost 

than traditional approaches [2]. Nowadays it has become 

common for the users that they share their data with the 

group members, which also includes Dropbox, iCloud, 

etc., Both the integrity and the reliability of the data 

stored in the cloud is fragile, as data stored in a cloud 

can easily be lost or corrupted due to software failure or 

hardware failure, and human errors [3], [4]. In a certain 

situation, cloud service providers may be reluctant to 

update the users about such data errors in order to 

maintain their reputation and avoid losing profits [5]. 

Integrity and correctness check should be made prior to 

any data utilization in the cloud [6]. 

 

The traditional approach is not handy as it involves 

checking for data correctness by retrieving the entire 

data from the cloud and verifying the data integrity by 

evaluating the correctness of the signatures (e.g., RSA 

[7]) or Hash values (e.g., MD5 [8]) of the entire data. 

Although it successfully Checks the correctness of the 

data, the efficiency of using this approach on cloud is in 

doubt [9].  

 

It involves downloading voluminous data from the cloud 

which will cost more or even waste user amounts of 

computation and communication resources, especially 

when data have been corrupted in the cloud.  Recently 

many mechanisms [9], [10], [11], [12], [13], [14], [15], 

[16], [17] have been deployed to allow not only the data 

owner but also public verifier to effectively perform 

integrity checking without downloading the entire data 

from the cloud, which is referred to as public auditing 

[5]. In these mechanisms, data is divided into many 

small blocks, where each block is independently signed 

by the owner; and a random combination of all blocks 

instead of the whole data is retrieved during integrity 

checking [9]. A public verifier or a third party auditor 

(TPA) can provide expert integrity checking services 

[18]. Unfortunately, current public auditing solutions 

mentioned above only focus on personal data in the 

cloud [1].  

 

We believe that sharing data among multiple users is 

perhaps one of the most engaging features that motivate 

cloud storage. Therefore, it is also necessary to ensure 

the integrity of shared data in the cloud is correct. 

However, a new significant privacy issue introduced in 

the case of shared data with the use of existing 
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mechanisms is the leakage of identity privacy to public 

verifiers [1]. 

 

 
For instance, Alice and Bob work together as a group 

and share a file in the cloud (as in fig.1). The shared file 

is divided into a number of small blocks, where each 

block is independently signed by one of the two users 

with existing public auditing solutions. Once a block in 

this shared file is modified by a user, this user needs to 

sign the new block using their private key. Eventually, 

different blocks are signed by different users due to the 

modification introduced by these two different users. 

Then, in order to correctly audit the integrity of the 

entire data, a public verifier needs to choose the 

appropriate public key for each block. Hence, this public 

auditor will gain knowledge about the identity of the 

signer on each block due to unique binding between an 

identity and a public key via digital certificates under 

public key infrastructure (PKI). Significant confidential 

information will be revealed as a result of improper 

identity privacy on shared data during public auditing.  

 

In this paper, to solve the above privacy issue on shared 

data, we propose a novel privacy preserving public 

auditing mechanism. We utilize ring signatures [21] to 

construct homomorphic authenticators [10] so that a 

public verifier is able to verify the integrity of the shared 

data without retrieving the entire data while the identity 

of the signer on each block is kept private from the 

public verifier. 

 

Table 1: Comparison among Different Mechanisms 

 
 

We extend our mechanism to support batch auditing, 

which can perform multiple auditing tasks 

simultaneously and improve the efficiency of 

verification for multiple auditing tasks. 

 

II. METHODS AND MATERIAL 
 

2.1 Problem Statement 

 
 

A. System Model  

As illustrated in Fig.2, the system model in this paper 

involves three parties: The cloud server, a group of users 

and a Public verifier. There are two types of users in a 

group: the original user and a number of group users. 

Both the original user and the group users are members 

of the group such that they are allowed to modify and 

access the shared data. Shared data and its verification 

metadata are also stored in the cloud server. A TPA or a 

public verifier intending to utilize shared data is able to 

publicly verify the integrity of shared data in the cloud 

server.  

 

When a public verifier wishes to check the integrity of 

shared data an auditing challenge is first sent to the 

cloud server. After attaining it, the cloud server responds 

to the public verifier with an auditing proof of the 

possession of shared data. Then, the TPA checks the 

correctness of the entire data by verifying the 

correctness of the auditing proof. Essentially, the 

process of public auditing is a challenge and responsive 

protocol between a public verifier and the cloud server 

[9].  

 

B. Threat Model  

Integrity Threats. Two kinds of threats related to the 

integrity of shared data are possible. First, an adversary 

may corrupt the integrity of shared data. Second, the 

cloud service provider may inadvertently corrupt data in 

its storage due to hardware failures or human errors.  

Privacy Threats. The identity of signer on each block in 

shared data is private and confidential to the group. 
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During auditing, TPA may try to reveal the identity of 

the signer based on verification metadata. Once he 

achieves he can easily distinguish a high value target 

from others.  

 

2.2 Preliminaries  

In this section, we briefly introduce cryptographic 

primitives and their corresponding properties that we 

implement. 

 

A. Bilinear Maps  

Let Ģ1, Ģ2 and ĢT be three multiplicative cyclic groups 

of prime order Þ, ģ1 be a generator of Ģ1 and ģ2 be a 

generator of Ģ2. A bilinear map ҿ: Ģ1 x Ģ2 ĢT 

with the following properties: 

 Computability: There exists an efficiently 

computable algorithm for computing map ҿ.  

 Bilinearity: for all υ € Ģ1, ν € Ģ2 and a,b € Ƶp , 

ҿ (υa, νb) = ҿ(υ, ν) ab  

 NonDegeneracy: ҿ(ģ1, ģ2) ≠ 1.  

Bilinear maps can be generally constructed from 

certain elliptical curves [27]. Readers do not 

learn the technical details about how to build 

linear maps from certain elliptic curves. 

Understanding the properties of bilinear maps 

described above is sufficient enough for readers 

to access the design of our mechanism. 

 

B. Ring Signatures  

With ring signatures, a verifier is convinced that a 

signature is computed using one of group member‟s 

private keys, but the verifier is not able to determine 

which one. By having a ring signature and a group of d 

users, a verifier cannot distinguish the signer‟s identity 

with a probability more than 1/d. 

 

C. Homomorphic Authenticators  

These are basic tools to construct public auditing 

mechanisms [1], [5], [9], [10], [12], [15]. Homomorphic 

Authenticable signature scheme, which denotes a 

homomorphic authenticator based on signatures, should 

satisfy the following properties:  

Let (pk, sk) denotes the signer‟s public/private key pair, 

ǿ1 denote a signature on block m1 € Ƶp, ǿ2 denote a 

signature on  

a block m2 € Ƶp.  

 Blockless Verifiability: Given ǿ1 and ǿ2, two 

random values ɑ1, ɑ2 € Ƶp and a block m‟= ɑ1m1 + 

ɑ2m2 € Ƶp, a verifier is able to check the 

correctness of the block m‟ without knowing block 

m1 and m2.  

 Non Malleability: Given ǿ1 and ǿ2, two random 

values ɑ1, ɑ2 € Ƶp and a block m‟= ɑ1m1 + ɑ2m2 € 

Ƶp, a user who does not have private key sk, is not 

able to generate a valid signature ǿ‟ on block m‟ by 

linearly combining signatures ǿ1 and ǿ2.  

 

Blockless verifiability allows the verifier to audit the 

correctness of data stored in cloud server with a special 

block, which is a linear combination of all the blocks in 

the data. If the integrity of the combined block is correct, 

then the verifier believes that the integrity if the entire 

data is correct. Non Malleability indicates that an 

adversary cannot generate valid signatures on arbitrary 

block by linearly combining existing signatures. 

 

2.3 Traditional Ring Signature Scheme  

A. Overview  

We design a new homomorphic authenticable ring 

signature (HARS) scheme, which is extended from a 

classic ring signature scheme [21]. The ring signatures 

generated by HARS are not only able to preserve 

identity privacy but also able to support blockless 

verifiability. We will show how to build the privacy 

preserving public auditing mechanism for shared data in 

the cloud based on this new ring signature scheme in the 

next section.  

 

B. Construction of HARS  

HARS contains three algorithms: KeyGen, RingSign 

and RingVerify. In KeyGen, each user in the group 

generates his/her public key and private key. In 

RingSign, a user in the group is able to generate a 

signature on a block and its block identifier with his/her 

private key and all the group members‟ public keys. A 

block identifier is a string that can distinguish the 

corresponding block from others. A verifier is able to 

check whether a given block is signed by a group 

member in RingVerify.  

 

2.4 Key Generation Scheme  

A. Overview  

The RSA scheme is a block cipher in which the plain 

text and cipher text are integers between 0 and n1 for 

some n. A typical size for „n‟ is 1024 bits, or 309 

decimal digits. That is, n are less than 21024. 

 

B. Description of RSA  
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The scheme developed by Rivest, Shamir, and Adleman 

makes use of an expression with exponentials. Plaintext 

is encrypted in blocks, with each block having a binary 

value less than some number „n‟. That is, the block size 

must be less than or equal to log2(n); in practice, the 

block size is i bits, where 2i<n≤2i+1. Encryption and 

decryption are of the following form, for some plaintext 

block M and cipher text block C:  

C = Me mod n  

M = Cd mod n = (Me)d mod n  

Both sender and the receiver must know the value of n. 

The sender knows the value of e, and only the receiver 

knows the value of d. Thus, this is a public key 

encryption algorithm with a public key of PU = {e,n} 

and a private key of PR = {d,n}.  

For example, the keys were generated as follows:  

1. Select two prime numbers, p = 17 and q = 11.  

2. Calculate n = pq = 17 * 11 = 187  

3. Calculate Φ( n ) = (p-1) (q-1) = 16 * 10 = 160.  

4. Select e such that e is relatively prime to Φ( n ) = 160 

and less than Φ( n ) ; We choose e = 7  

5. Determine d such that de = 1 (mod 160 ) and d < 160. 

The correct value is d = 23, because 23 * 7 = 161 = 10 * 

160 + 1 ; d can be calculated using the extended Euclid‟s 

algorithm.  

The resulting keys are public key PU = {7 , 187 } and 

private key PR = {23 , 187}. The example shows the use 

of these keys for a plaintext input of M = 88. For 

encryp-tion, we need to calculate C = 887 mod 187. 

Exploiting the properties of modular arithmetic, we can 

do this as follows :  

887 mod 187 = [(884 mod 187 ) * ( 882 mod 187) * 

(881 mod 187)] mod 187  

881 mod 187 = 88  

882 mod 187 = 7744 mod 187 = 77  

884 mod 187 = 59, 969, 536 mod 187 = 132  

887 mod 187 = ( 88 * 77 * 132 ) mod 187 = 894, 432 

mod 187 = 11  

For decryption, we calculate  

M = 1123 mod 187  

1123 mod 187 = [(111 mod 187 ) * (112 mod 187 ) * ( 

114 mod 187 ) * (118 mod 187 )] mod 187  

111 mod 187 = 11  

112 mod 187 = 121  

114 mod 187 = 124, 641 mod 187 = 55  

118 mod 187 = 214, 358, 881 mod 187 = 33  

1123 mod 187 = (11 * 121 * 55 * 33 * 33) mod 187 = 

79, 720, 245 mod 187 = 88 

 

C. Security of RSA  

Four possible approaches to attacking the RSA 

algorithm are as follows :  

 Brute Force : This involves trying all possible 

private keys.  

 Mathematical attacks : There are several 

approaches, all equivalent in effort to factoring the 

product of two primes.  

 Timing attacks : These depend on the running time 

of the decryption algorithm.  

 Chosen ciphertext attacks : This type of attack 

exploits properties of the RSA algorithm.  

 

The defense against the bruteforce approach is the same 

for RSA as for other cryptosystems, namely,  

use a large key space. Thus the larger the number of bits 

in d, the better it is secure. However, because the 

calculations involved, both in key generation and in 

encryption/decryption, are complex, the larger the size 

of the key, the slower the system will run 

.  

D. Implementation  

We implement the RSA algorithm in our methodology 

in the registration phase of both the group users and 

group owners. An individual public and private key is 

generated for every individual in the group user and the 

group owner. These keys are further used whenever a 

user wants to share his/her data. At the time of sharing 

the user‟s data is divided into several blocks and each 

block is generated a unique signature which is based 

upon the private and public key of the group owner and 

the public key of the group user.  

 

2.5 New Ring Signature Scheme  

 

A. Overview  

A hash function such as SHA was not designed for use 

as a  Message Authentication Code (MAC) and cannot 

be directly used for that purpose because it does not rely 

on a secret key. There have been a number of proposals 

for the incorporation of a secret key into an existing has 

algorithm. The approach that has received the most 

support is HMAC which has been chosen as the 

mandatory to implement MAC for IP security, and is 

used in other internet protocols, such as SSL. 

B. Design Objectives  

RFC 2104 lists the following design objectives for 

HMAC:  
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 To use, without modifications, available has 

functions. In particular, hash functions that perform 

well in software, and for which code is freely and 

widely available.  

 To allow for easy replaceability of the embedded 

hash function in case faster or more secure hash 

functions are found or required.  

 To preserve the original performance of the hash 

function without incurring a significant degradation.  

 To use and handle keys in a simple way.  

 To have a well understood cryptographic analysis of 

the strength of the authentication mechanism based 

on reasonable assumptions about the embedded hash 

function.  

 

The first two objectives are important to the 

acceptability of HMAC. It treats the hash function as a 

“black box”. This has two benefits. First, an existing 

implementation of a hash function can be used as a 

module in implementing HMAC. In this way, the bulk 

of the HMAC code is prepackaged and ready to use 

without modification. Second, if it is ever desired to 

replace a given hash function in an HMAC 

implementation, all that is required is to remove the 

existing hash function module and drop in the new 

module. This could be done if a faster hash function 

were desired. More important, if the security of the 

embedded hash function were compromised, the security 

of HMAC could be retained simply by replacing the 

embedded hash function with a more secure one.  

 

C. HMAC algorithm  

H = embedded hash function  

IV = initial value input to hash function  

M = message input to HMAC  

Yi = ith block of M, 0 ≤ i ≤ ( L – 1)  

L = number of blocks in M  

b = number of bits in a block  

n = length of hash code produced by embedded hash 

function  

K = secret key recommended length is > n; if key length 

is greater than b; the key is input to the hash function to 

produce an n-bit key  

K+ = K padded with zeros on the left so that the result is 

b bits in length.  

ipad = 00110110  

opad = 01011100  

Then HMAC can be expressed as follow:  

HMAC (K, M)= H[(K+ø opad) || H [(K+ ø ipad) || M]]  

D. Security of HMAC  

The security of any MAC function based on an 

embedded  

Hash function depends in some way on the 

cryptographic strength of the underlying hash function. 

The appeal of HMAC is that its designers have been able 

to prove an exact relationship between the strength of 

the embedded hash function and the strength of HMAC.  

 

The security of a MAC function is generally expressed 

in terms of the probability of successful forgery with a 

given amount of the time spent by the forger and a given 

number of messageMAC pairs created with the same 

key. In essence, it is provided in that for a given level of 

effort on messages generated by a legitimate user and 

seen by the attacker, the probability of successful attack 

on HMAC is equivalent to one of the following attacks 

on the embedded hash function :  

1. The attacker is able to compute an output of the 

compression function even with an IV that is 

random, secret, and unknown to the attacker. 

2. The attacker finds collision in the hash function 

even when the IV is random and secret.  

 

In the first attack, we can view the compression function 

as equivalent to the hash function applied to a message 

consisting of a single bbit block. For this attack, the IV 

of the hash function is replaced by a secret, random 

value of n bits. An attack on this hash function requires 

either a bruteforce attack on the key, which is a level of 

effort on the order of 2n, or a birthday attack, which is a 

special case of the second attack.  

In second attack, the attacker is looking for two 

messages M and M’ that produce hash: H( M )=H( M’). 

This is birthday attack. Thus, if speed is a concern, it is 

fully acceptable to use MD5 rather than SHA-1 as the 

embedded hash function for HMAC.  

 

E. Implementation of HMAC  

In our methodology we implement HMAC algorithm 

during the generation of ring signatures. After dividing 

the data into several blocks, each block is signed by the 

user with his own private and public key where they get 

appended along with the HMAC algorithm and finally 

generate the ring signature. The ring signatures 

generated by HMAC algorithm are not only able to 

preserve identity privacy but also able to support 

blockless verifiability. Hence, the public verifier need 
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not download the entire data, which may be inefficient 

as it costs memory wastage and time, instead he can just 

verify the ring signatures on each block and check for 

the correctness of the data.  

 

 
Fig 3: Architecture Diagram 

 

2.5 Batch Auditing  

 

At times, a public verifier may need to verify the 

integrity of multiple auditing tasks in a very short time. 

Directly verifying these tasks separately would be 

inefficient. By using the properties of bilinear maps, we 

can further extend our implementation to support batch 

auditing, which can verify the correctness of multiple 

auditing tasks simultaneously and improve the efficiency 

of public auditing. Based on the correctness of Equation 

(6), the correctness of batch auditing in Equation (7) can 

be presented as 

  

which can save the public verifier about (d -1)B pairing 

operations in total compared to Equation (7). Note that 

batch auditing will fail if at least one incorrect auditing 

proof exists in all the B auditing proofs. To allow most 

of auditing proofs to still pass the verification when 

there exists only a small number of incorrect auditing 

proofs, we can utilize binary search [5] during batch 

auditing. More specifically, once the batch auditing of 

the B auditing proofs fails, the public verifier divides the 

set of all the B auditing proofs into two subsets, where 

each subset contains a number of B=2 auditing proofs. 

Then the public verifier rechecks the correctness of 

auditing proofs in each subset using batch auditing. If 

the verification result of one subset is correct, then all 

the auditing proofs in this subset are all correct. 

Otherwise, this subset is further divided into two sub 

subsets, and the public verifier rechecks the correctness 

of auditing proofs in each sub subset with batch auditing 

until all the incorrect auditing proofs are found. Clearly, 

when the number of incorrect auditing proofs increases, 

the public verifier needs more time to distinguish all the 

incorrect auditing proofs, and the efficiency of batch 

auditing will be reduced. Experimental result in B shows 

that, when less than 12 percent of all the B auditing 

proofs are incorrect, batching auditing is still more 

efficient than verifying all the B auditing proofs one by 

one. 

  

III. RESULTS AND DISCUSSION 

 

PERFORMANCE 

 

In this section, we first analyze the computation and 

communication costs of our implementation, and then 

evaluate the performance of the same in experiments.  

 

A. Computation Cost  

During an auditing task, the public verifier first 

generates some random values to construct an auditing 

challenge, which only introduces a small cost in 

computation. Then, after receiving the auditing 

challenge, the cloud server needs to compute an auditing 

proof {ƛ, μ, Φ, {idj}j€J}. Based on the description in 

Section 5, the computation cost of calculating an 

auditing proof is about (k+dc)ExpG1 + dcMulG1 + 

ckMulZp + kHashZp , where ExpG1 denotes the cost of 

computing one exponentiation in G1, MulG1 denotes the 

cost of computing one multiplication in G1, MulZp and 

HashZp respectively denote the cost of computing one 
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multiplication and one hashing operation in Zp. To 

check the correctness of an auditing proof {ƛ, μ, Φ, 

{idj}j€J, a public verifier audits it with Equation (6). The 

total cost of verifying this auditing proof is about (2k + 

c)ExpG1 + (2k + c) MulG1 + dMulGT + cHashG1 + (d 

+ 2)Pair. We use Pair to denote the cost of computing 

one pairing operation on e : G1 * G2 GT .  

 

B. Communication Cost  

 

The communication cost is mainly introduced by two 

aspects: the auditing challenge and auditing proof. For 

each auditing challenge {j, yj}j€J , the communication 

cost is c(|q| + |n|) bits, where |q| is the length of an 

element of Zq and |n| is the length of an index. Each 

auditing proof {ƛ, μ, Φ, {idj}j€J} contains (k + d) 

elements of G1, k elements of Zp and c elements of Zq, 

therefore the communication cost of one auditing proof 

is (2k + d)|p| + c|q| bits.  

 

C. Experimental Results  

 

We now evaluate the efficiency of our method. In our 

experiments, we utilize the GNU Multiple Precision 

Arithmetic (GMP) library and Pairing Based 

Cryptography (PBC) library. All the following 

experiments are based on C and tested on a 2.26 GHz 

Linux system over 1,000 times. Because our 

implementation needs more exponentiations than pairing 

operations during the process of auditing, the elliptic 

curve we choose in our experiments is an MNT curve 

with a base field size of 159 bits, which has a better 

performance than other curves on computing 

exponentiations. We choose |p| = 160 bits and |q| = 80 

bits. We assume the total number of blocks in shared 

data is n = 1,000, 000 and |n| = 20 bits. The size of 

shared data is 2GB. To keep the detection probability 

greater than 99 percent, we set the number of selected 

blocks in an auditing task as c = 460 [9]. If only 300 

blocks are selected, the detection probability is greater 

than 95 percent. We also assume the size of the group d 

€ [2, 20] in the following experiments. Certainly, if a 

larger group size is used, the total computation cost will 

increase due to the increasing number of exponentiations 

and pairing operations.  

 

 
Fig 4: Performance of signature generation 

Performance of Signature Generation. According to 

Section 5, the generation time of a ring signature on a 

block is determined by the number of users in the group 

and the number of elements in each block. As illustrated 

in Figs. 10a and 10b, when k is fixed, the generation 

time of a ring signature is linearly increasing with the 

size of the group; when d is fixed, the generation time of 

a ring signature is linearly increasing with the number of 

elements in each block. Specifically, when d = 10 and k 

= 100, a user in the group requires about 37 mill seconds 

to compute a ring signature on a block in shared data.  

 

Performance of Auditing. Based on our proceeding 

analyses, the auditing performance under different 

detection probabilities is illustrated in Figs. 11a and 12b, 

and Table 2. As shown in Fig. 11a, the auditing time is 

linearly increasing with the size of the group. When c = 

300, if there are two users sharing data in the cloud, the 

auditing time is only about 0:5 seconds; when the 

number of group member increases to 20, it takes about 

2:5 seconds to finish the same auditing task. The 

communication cost of an auditing task under different 

parameters is presented in Figs. 12a and 12b. Compared 

to the size of entire shared data, the communication cost 

that a public verifier consumes in an auditing task is 

very small. It is clear in Table 2 that when maintaining a 

higher detection probability, a public verifier needs to 

consume more computation and communication 

overhead to finish the auditing task. Specifically, when c 

= 300, it takes a public verifier 1:32 seconds to audit the 

correctness of shared data, where the size of shared data 

is 2GB; when c = 460, a public verifier needs 1:94 

seconds to verify the integrity of the same shared data. 

 
Fig 5 : Performance of auditing time 
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As we discussed in the previous section, the privacy 

performance of our mechanism depends on the number 

of members in the group. Given a block in shared data, 

the probability that a public verifier fails to reveal the 

identity of the signer is 1 – 1/d, where d ≤ 2. Clearly, 

when the number of group members is larger, our 

mechanism has a better performance in terms of privacy. 

As we can see from Fig. 13a, this privacy performance 

increases with an increase of the size of the group.  

 

Performance of Batch Auditing. As we discussed in 

Section 5, when there are multiple auditing proofs, the 

public verifier can improve the efficiency of verification 

by performing batch auditing. In the following 

experiments, we choose c = 300, k = 100 and d = 10. 

Compared to verifying a number of B auditing proofs 

one by one, if these B auditing proofs are for different 

groups, batching auditing can save 2:1 percent of the 

auditing time per auditing proof on average (as shown in 

Fig. 14a). If these B auditing tasks are for the same 

group, batching auditing can save 12:6 percent of the 

average auditing time per auditing proof (as shown in 

Fig. 14b). Now we evaluate the performance of batch 

auditing when incorrect auditing proofs exist among the 

B auditing proofs. As we mentioned in Section 5, we can 

use binary search in batch auditing, so that we can 

distinguish the incorrect ones from the B auditing 

proofs.  

 

However, the increasing number of incorrect auditing 

proofs will reduce the efficiency of batch auditing. It is 

important for us to find out the maximal number of 

incorrect auditing proofs exist in the B auditing proofs, 

where the batch auditing is still more efficient than 

separate auditing.  

 

In this experiment, we assume the total number of 

auditing proofs in the batch auditing is B = 128 (because 

we leverage binary search, it is better to set B as a power 

of 2), the number of elements in each block is k = 100 

and the number of users in the group is d = 10. Let A 

denote the number of incorrect auditing proofs. In 

addition, we also assume that it always requires the 

worst case algorithm to detect the incorrect auditing 

proofs in the experiment. 

 

 
Fig 6 : Performance of privacy and batch auditing 

 

According to Equation (7) and (8), the extra 

computation cost in binary search is mainly introduced 

by extra pairing operations. As shown in Fig. 14a, if all 

the 128 auditing proofs are for different groups, when 

the number of incorrect auditing proofs is less than 16 

(12 percent of all the auditing proofs), batching auditing 

is still more efficient than separate auditing.  

Similarly, in Fig. 14b, if all the auditing proofs are for 

the same group, when the number of incorrect auditing 

proofs is more than 16, batching auditing is less efficient 

than verifying these auditing proofs separately. 

 

 
Fig 7: Efficiency of batch auditing with incorrect proofs 

 

Provable data possession (PDP), proposed by Ateniese 

et al. [9], allows a verifier to check the correctness of a 

client‟s data stored at an untrusted server. By utilizing 

RSAbased homomorphic authenticators and sampling 

strategies, the verifier is able to publicly audit the 

integrity of data without retrieving the entire data, which 

is referred to as public auditing. Unfortunately, their 

mechanism is only suitable for auditing the integrity of 

personal data. Juels and Kaliski [32] defined another 

similar model called Proofs of Retrievability (POR), 

which is also able to check the correctness of data on an 

untrusted server. The original file is added with a set of 

randomly valued check blocks called sentinels. The 

verifier challenges the untrusted server by specifying the 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

319 

positions of a collection of sentinels and asking the 

untrusted server to return the associated sentinel values. 

Shacham and Waters [10] designed two improved 

schemes. The first scheme is built from BLS signatures 

[27], and the second one is based on pseudorandom 

functions.  

 

To support dynamic data, Ateniese et al. [33] presented 

an efficient PDP mechanism based on symmetric keys. 

This mechanism can support update and delete 

operations on data, however, insert operations are not 

available in this mechanism. Because it exploits 

symmetric keys to verify the integrity of data, it is not 

public verifiable and only provides a user with a limited 

number of verification requests. Wang et al. [12] utilized 

Merkle Hash Tree and BLS signatures [27] to support 

dynamic data in a public auditing mechanism. Erway et 

al. [11] introduced dynamic provable data possession 

(DPDP) by using authenticated dictionaries, which are 

based on rank information. Zhu et al. [15] exploited the 

fragment structure to reduce the storage of signatures in 

their public auditing mechanism. In addition, they also 

used index hash tables to provide dynamic operations on 

data. The public mechanism proposed by Wang et al. [5] 

and its journal version [18] are able to preserve users‟ 

confidential data from a public verifier by using random 

maskings. In addition, to operate multiple auditing tasks 

from different users efficiently, they extended their 

mechanism to enable batch auditing by leveraging 

aggregate signatures [21].  

 

Wang et al. [13] leveraged homomorphic tokens to 

ensure the correctness of erasure codesbased data 

distributed on multiple servers. This mechanism is able 

not only to support dynamic data, but also to identify 

misbehaved servers. To minimize communication 

overhead in the phase of data repair, Chen et al. [14] 

also introduced a mechanism for auditing the correctness 

of data under the multiserver scenario, where these data 

are encoded by network coding instead of using erasure 

codes. More recently, Cao et al. [16] constructed an LT 

codesbased secure and reliable cloud storage 

mechanism. Compare to previous work [13], [14], this 

mechanism can avoid high decoding computation cost 

for data users and save computation resource for online 

data owners during data repair.  

 

 

 

Related Works  

 

By utilizing RSAbased homomorphic authenticators and 

sampling strategies, the verifier is able to publicly audit 

the integrity of data without retrieving the entire data, 

which is referred to as public auditing. Unfortunately, 

their mechanism is only suitable for auditing the 

integrity of personal data. 

 

IV. CONCLUSION 

 
In this paper, we propose our method, a 

privacypreserving public auditing mechanism for shared 

data in the cloud. We utilize ring signatures to construct 

homomorphic authenticators, so that a public verifier is 

able to audit shared data integrity without retrieving the 

entire data, yet it cannot distinguish who is the signer on 

each block. To improve the efficiency of verifying 

multiple auditing tasks, we further extend our 

mechanism to support batch auditing. 

 

V. REFERENCES 
[1] B. Wang B Li, and H. Li, “Oruta: Privacy-Preserving Public 

Auditing for Shared Data in the Cloud” Proc IEEE Fifth Int‟l 

Conf. Cloud Computing pp, 295-302, 2012 

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. 

Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M. 

Zaharia, "A View of Cloud Computing" Comm ACM, Vol 53, 

no. 4, pp. 50,58, April 2010 

[3] K. Ren C. Wand abd Q. Wang, "Security Challanges for the 

Public Cloud" IEEE Internet Computing, Vol. 16, no. 1, pp. 69-

73, 2012 

[4] F. Song E. Shi, I. Fischer and U. Shankar, "Cloud Data 

Protection for the Masses", Computer, vol.45, no. 1. 39-45,2012 

[5] C. Wang, Q. Wang, K. Ren, and W. Lou, "Privacy-Preserving 

Public Auditing for Data Storage Security in Cloud Computing" 

Proc. IEEE INFOCOM, pp. 525-533,2010. 

[6] B. Wang, M. Li, S.S. Chow, and H. Li, "Computing Encrypted 

Cloud Data Efficiently under Multiple Keys" Proc. IEEE Conf. 

Comm. and Network Security(CNS'13), pp. 90-99, 2013 

[7] R. Rivest, A. Shamir, and L. Adleman, "A Method for 

Obtaining Digital Signatures and Public Key Cryptosystems" 

Comm. ACM, vol.21m no2, pp.120-126,1978 

[8] The MD5 Message-Digest Algorithm (RFC1321). 

https://tools.ieft.org/html/rfc1321,2014 

[9] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. 

Peterson, and D. Song "Provable Data Possession at Untrusted 

Stores" Proc. 14th ACM Conf. Computer and Comm Security 

(CCS ' 07), pp. 598-610, 2007 

[10] H Shacham and B. Waters, "Compact Proofs of Retrivability" 

Proc. 14th Int'l Conf. THeory and Application of Crytology and 

Information Security: Advances in Cryptology 

(ASIACRYPT'08), pp.90-107, 2008. 

https://tools.ieft.org/html/rfc1321,2014

