
IJSRSET1522100 | Received: 30 March 2015 | Accepted: 02 April 2015 | March-April 2015 [(1)2: 311-319]

© 2015 IJSRSET | Volume 1 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

311

Security Challenges for Public Cloud
Raghavendran R, Parthasarathi L, Deepa N

Computer Science & Engineering,GKM College of Engineering & Technology, Chennai, Tamilnadu, India

ABSTRACT

The integrity of data in cloud storage is subject to skepticism and scrutiny, as data stored in the cloud can easily be

corrupted due to the inevitable hardware/software failures and human errors. Therefore, the integrity of cloud data

should be verified before any data utilization, such as search or computation over cloud data. The traditional

approach for checking data correctness is to retrieve the entire data from the cloud, and then verify data integrity by

checking the correctness of signatures or hash values of the entire data. Certainly, this conventional approach is able

to successfully check the correctness of cloud data. However, the efficiency of using this traditional approach on

cloud data is in doubt. The main reason is that the size of cloud data is large in general. Downloading the entire

cloud data to verify data integrity will cost or even waste user amounts of computation and communication

resources, especially when data have been corrupted in the cloud.

Keywords: Public Auditing, Privacy Preserving, Shared data, Cloud Computing

I. INTRODUCTION

Cloud service providers offer users efficient and scalable

data storage services with a much lower marginal cost

than traditional approaches [2]. Nowadays it has become

common for the users that they share their data with the

group members, which also includes Dropbox, iCloud,

etc., Both the integrity and the reliability of the data

stored in the cloud is fragile, as data stored in a cloud

can easily be lost or corrupted due to software failure or

hardware failure, and human errors [3], [4]. In a certain

situation, cloud service providers may be reluctant to

update the users about such data errors in order to

maintain their reputation and avoid losing profits [5].

Integrity and correctness check should be made prior to

any data utilization in the cloud [6].

The traditional approach is not handy as it involves

checking for data correctness by retrieving the entire

data from the cloud and verifying the data integrity by

evaluating the correctness of the signatures (e.g., RSA

[7]) or Hash values (e.g., MD5 [8]) of the entire data.

Although it successfully Checks the correctness of the

data, the efficiency of using this approach on cloud is in

doubt [9].

It involves downloading voluminous data from the cloud

which will cost more or even waste user amounts of

computation and communication resources, especially

when data have been corrupted in the cloud. Recently

many mechanisms [9], [10], [11], [12], [13], [14], [15],

[16], [17] have been deployed to allow not only the data

owner but also public verifier to effectively perform

integrity checking without downloading the entire data

from the cloud, which is referred to as public auditing

[5]. In these mechanisms, data is divided into many

small blocks, where each block is independently signed

by the owner; and a random combination of all blocks

instead of the whole data is retrieved during integrity

checking [9]. A public verifier or a third party auditor

(TPA) can provide expert integrity checking services

[18]. Unfortunately, current public auditing solutions

mentioned above only focus on personal data in the

cloud [1].

We believe that sharing data among multiple users is

perhaps one of the most engaging features that motivate

cloud storage. Therefore, it is also necessary to ensure

the integrity of shared data in the cloud is correct.

However, a new significant privacy issue introduced in

the case of shared data with the use of existing

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

312

mechanisms is the leakage of identity privacy to public

verifiers [1].

For instance, Alice and Bob work together as a group

and share a file in the cloud (as in fig.1). The shared file

is divided into a number of small blocks, where each

block is independently signed by one of the two users

with existing public auditing solutions. Once a block in

this shared file is modified by a user, this user needs to

sign the new block using their private key. Eventually,

different blocks are signed by different users due to the

modification introduced by these two different users.

Then, in order to correctly audit the integrity of the

entire data, a public verifier needs to choose the

appropriate public key for each block. Hence, this public

auditor will gain knowledge about the identity of the

signer on each block due to unique binding between an

identity and a public key via digital certificates under

public key infrastructure (PKI). Significant confidential

information will be revealed as a result of improper

identity privacy on shared data during public auditing.

In this paper, to solve the above privacy issue on shared

data, we propose a novel privacy preserving public

auditing mechanism. We utilize ring signatures [21] to

construct homomorphic authenticators [10] so that a

public verifier is able to verify the integrity of the shared

data without retrieving the entire data while the identity

of the signer on each block is kept private from the

public verifier.

Table 1: Comparison among Different Mechanisms

We extend our mechanism to support batch auditing,

which can perform multiple auditing tasks

simultaneously and improve the efficiency of

verification for multiple auditing tasks.

II. METHODS AND MATERIAL

2.1 Problem Statement

A. System Model

As illustrated in Fig.2, the system model in this paper

involves three parties: The cloud server, a group of users

and a Public verifier. There are two types of users in a

group: the original user and a number of group users.

Both the original user and the group users are members

of the group such that they are allowed to modify and

access the shared data. Shared data and its verification

metadata are also stored in the cloud server. A TPA or a

public verifier intending to utilize shared data is able to

publicly verify the integrity of shared data in the cloud

server.

When a public verifier wishes to check the integrity of

shared data an auditing challenge is first sent to the

cloud server. After attaining it, the cloud server responds

to the public verifier with an auditing proof of the

possession of shared data. Then, the TPA checks the

correctness of the entire data by verifying the

correctness of the auditing proof. Essentially, the

process of public auditing is a challenge and responsive

protocol between a public verifier and the cloud server

[9].

B. Threat Model

Integrity Threats. Two kinds of threats related to the

integrity of shared data are possible. First, an adversary

may corrupt the integrity of shared data. Second, the

cloud service provider may inadvertently corrupt data in

its storage due to hardware failures or human errors.

Privacy Threats. The identity of signer on each block in

shared data is private and confidential to the group.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

313

During auditing, TPA may try to reveal the identity of

the signer based on verification metadata. Once he

achieves he can easily distinguish a high value target

from others.

2.2 Preliminaries

In this section, we briefly introduce cryptographic

primitives and their corresponding properties that we

implement.

A. Bilinear Maps

Let Ģ1, Ģ2 and ĢT be three multiplicative cyclic groups

of prime order Þ, ģ1 be a generator of Ģ1 and ģ2 be a

generator of Ģ2. A bilinear map ҿ: Ģ1 x Ģ2 ĢT

with the following properties:

 Computability: There exists an efficiently

computable algorithm for computing map ҿ.

 Bilinearity: for all υ € Ģ1, ν € Ģ2 and a,b € Ƶp ,

ҿ (υa, νb) = ҿ(υ, ν) ab

 NonDegeneracy: ҿ(ģ1, ģ2) ≠ 1.

Bilinear maps can be generally constructed from

certain elliptical curves [27]. Readers do not

learn the technical details about how to build

linear maps from certain elliptic curves.

Understanding the properties of bilinear maps

described above is sufficient enough for readers

to access the design of our mechanism.

B. Ring Signatures

With ring signatures, a verifier is convinced that a

signature is computed using one of group member‟s

private keys, but the verifier is not able to determine

which one. By having a ring signature and a group of d

users, a verifier cannot distinguish the signer‟s identity

with a probability more than 1/d.

C. Homomorphic Authenticators

These are basic tools to construct public auditing

mechanisms [1], [5], [9], [10], [12], [15]. Homomorphic

Authenticable signature scheme, which denotes a

homomorphic authenticator based on signatures, should

satisfy the following properties:

Let (pk, sk) denotes the signer‟s public/private key pair,

ǿ1 denote a signature on block m1 € Ƶp, ǿ2 denote a

signature on

a block m2 € Ƶp.

 Blockless Verifiability: Given ǿ1 and ǿ2, two

random values ɑ1, ɑ2 € Ƶp and a block m‟= ɑ1m1 +

ɑ2m2 € Ƶp, a verifier is able to check the

correctness of the block m‟ without knowing block

m1 and m2.

 Non Malleability: Given ǿ1 and ǿ2, two random

values ɑ1, ɑ2 € Ƶp and a block m‟= ɑ1m1 + ɑ2m2 €

Ƶp, a user who does not have private key sk, is not

able to generate a valid signature ǿ‟ on block m‟ by

linearly combining signatures ǿ1 and ǿ2.

Blockless verifiability allows the verifier to audit the

correctness of data stored in cloud server with a special

block, which is a linear combination of all the blocks in

the data. If the integrity of the combined block is correct,

then the verifier believes that the integrity if the entire

data is correct. Non Malleability indicates that an

adversary cannot generate valid signatures on arbitrary

block by linearly combining existing signatures.

2.3 Traditional Ring Signature Scheme

A. Overview

We design a new homomorphic authenticable ring

signature (HARS) scheme, which is extended from a

classic ring signature scheme [21]. The ring signatures

generated by HARS are not only able to preserve

identity privacy but also able to support blockless

verifiability. We will show how to build the privacy

preserving public auditing mechanism for shared data in

the cloud based on this new ring signature scheme in the

next section.

B. Construction of HARS

HARS contains three algorithms: KeyGen, RingSign

and RingVerify. In KeyGen, each user in the group

generates his/her public key and private key. In

RingSign, a user in the group is able to generate a

signature on a block and its block identifier with his/her

private key and all the group members‟ public keys. A

block identifier is a string that can distinguish the

corresponding block from others. A verifier is able to

check whether a given block is signed by a group

member in RingVerify.

2.4 Key Generation Scheme

A. Overview

The RSA scheme is a block cipher in which the plain

text and cipher text are integers between 0 and n1 for

some n. A typical size for „n‟ is 1024 bits, or 309

decimal digits. That is, n are less than 21024.

B. Description of RSA

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

314

The scheme developed by Rivest, Shamir, and Adleman

makes use of an expression with exponentials. Plaintext

is encrypted in blocks, with each block having a binary

value less than some number „n‟. That is, the block size

must be less than or equal to log2(n); in practice, the

block size is i bits, where 2i<n≤2i+1. Encryption and

decryption are of the following form, for some plaintext

block M and cipher text block C:

C = Me mod n

M = Cd mod n = (Me)d mod n

Both sender and the receiver must know the value of n.

The sender knows the value of e, and only the receiver

knows the value of d. Thus, this is a public key

encryption algorithm with a public key of PU = {e,n}

and a private key of PR = {d,n}.

For example, the keys were generated as follows:

1. Select two prime numbers, p = 17 and q = 11.

2. Calculate n = pq = 17 * 11 = 187

3. Calculate Φ(n) = (p-1) (q-1) = 16 * 10 = 160.

4. Select e such that e is relatively prime to Φ(n) = 160

and less than Φ(n) ; We choose e = 7

5. Determine d such that de = 1 (mod 160) and d < 160.

The correct value is d = 23, because 23 * 7 = 161 = 10 *

160 + 1 ; d can be calculated using the extended Euclid‟s

algorithm.

The resulting keys are public key PU = {7 , 187 } and

private key PR = {23 , 187}. The example shows the use

of these keys for a plaintext input of M = 88. For

encryp-tion, we need to calculate C = 887 mod 187.

Exploiting the properties of modular arithmetic, we can

do this as follows :

887 mod 187 = [(884 mod 187) * (882 mod 187) *

(881 mod 187)] mod 187

881 mod 187 = 88

882 mod 187 = 7744 mod 187 = 77

884 mod 187 = 59, 969, 536 mod 187 = 132

887 mod 187 = (88 * 77 * 132) mod 187 = 894, 432

mod 187 = 11

For decryption, we calculate

M = 1123 mod 187

1123 mod 187 = [(111 mod 187) * (112 mod 187) * (

114 mod 187) * (118 mod 187)] mod 187

111 mod 187 = 11

112 mod 187 = 121

114 mod 187 = 124, 641 mod 187 = 55

118 mod 187 = 214, 358, 881 mod 187 = 33

1123 mod 187 = (11 * 121 * 55 * 33 * 33) mod 187 =

79, 720, 245 mod 187 = 88

C. Security of RSA

Four possible approaches to attacking the RSA

algorithm are as follows :

 Brute Force : This involves trying all possible

private keys.

 Mathematical attacks : There are several

approaches, all equivalent in effort to factoring the

product of two primes.

 Timing attacks : These depend on the running time

of the decryption algorithm.

 Chosen ciphertext attacks : This type of attack

exploits properties of the RSA algorithm.

The defense against the bruteforce approach is the same

for RSA as for other cryptosystems, namely,

use a large key space. Thus the larger the number of bits

in d, the better it is secure. However, because the

calculations involved, both in key generation and in

encryption/decryption, are complex, the larger the size

of the key, the slower the system will run

.

D. Implementation

We implement the RSA algorithm in our methodology

in the registration phase of both the group users and

group owners. An individual public and private key is

generated for every individual in the group user and the

group owner. These keys are further used whenever a

user wants to share his/her data. At the time of sharing

the user‟s data is divided into several blocks and each

block is generated a unique signature which is based

upon the private and public key of the group owner and

the public key of the group user.

2.5 New Ring Signature Scheme

A. Overview

A hash function such as SHA was not designed for use

as a Message Authentication Code (MAC) and cannot

be directly used for that purpose because it does not rely

on a secret key. There have been a number of proposals

for the incorporation of a secret key into an existing has

algorithm. The approach that has received the most

support is HMAC which has been chosen as the

mandatory to implement MAC for IP security, and is

used in other internet protocols, such as SSL.

B. Design Objectives

RFC 2104 lists the following design objectives for

HMAC:

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

315

 To use, without modifications, available has

functions. In particular, hash functions that perform

well in software, and for which code is freely and

widely available.

 To allow for easy replaceability of the embedded

hash function in case faster or more secure hash

functions are found or required.

 To preserve the original performance of the hash

function without incurring a significant degradation.

 To use and handle keys in a simple way.

 To have a well understood cryptographic analysis of

the strength of the authentication mechanism based

on reasonable assumptions about the embedded hash

function.

The first two objectives are important to the

acceptability of HMAC. It treats the hash function as a

“black box”. This has two benefits. First, an existing

implementation of a hash function can be used as a

module in implementing HMAC. In this way, the bulk

of the HMAC code is prepackaged and ready to use

without modification. Second, if it is ever desired to

replace a given hash function in an HMAC

implementation, all that is required is to remove the

existing hash function module and drop in the new

module. This could be done if a faster hash function

were desired. More important, if the security of the

embedded hash function were compromised, the security

of HMAC could be retained simply by replacing the

embedded hash function with a more secure one.

C. HMAC algorithm

H = embedded hash function

IV = initial value input to hash function

M = message input to HMAC

Yi = ith block of M, 0 ≤ i ≤ (L – 1)

L = number of blocks in M

b = number of bits in a block

n = length of hash code produced by embedded hash

function

K = secret key recommended length is > n; if key length

is greater than b; the key is input to the hash function to

produce an n-bit key

K+ = K padded with zeros on the left so that the result is

b bits in length.

ipad = 00110110

opad = 01011100

Then HMAC can be expressed as follow:

HMAC (K, M)= H[(K+ø opad) || H [(K+ ø ipad) || M]]

D. Security of HMAC

The security of any MAC function based on an

embedded

Hash function depends in some way on the

cryptographic strength of the underlying hash function.

The appeal of HMAC is that its designers have been able

to prove an exact relationship between the strength of

the embedded hash function and the strength of HMAC.

The security of a MAC function is generally expressed

in terms of the probability of successful forgery with a

given amount of the time spent by the forger and a given

number of messageMAC pairs created with the same

key. In essence, it is provided in that for a given level of

effort on messages generated by a legitimate user and

seen by the attacker, the probability of successful attack

on HMAC is equivalent to one of the following attacks

on the embedded hash function :

1. The attacker is able to compute an output of the

compression function even with an IV that is

random, secret, and unknown to the attacker.

2. The attacker finds collision in the hash function

even when the IV is random and secret.

In the first attack, we can view the compression function

as equivalent to the hash function applied to a message

consisting of a single bbit block. For this attack, the IV

of the hash function is replaced by a secret, random

value of n bits. An attack on this hash function requires

either a bruteforce attack on the key, which is a level of

effort on the order of 2n, or a birthday attack, which is a

special case of the second attack.

In second attack, the attacker is looking for two

messages M and M’ that produce hash: H(M)=H(M’).

This is birthday attack. Thus, if speed is a concern, it is

fully acceptable to use MD5 rather than SHA-1 as the

embedded hash function for HMAC.

E. Implementation of HMAC

In our methodology we implement HMAC algorithm

during the generation of ring signatures. After dividing

the data into several blocks, each block is signed by the

user with his own private and public key where they get

appended along with the HMAC algorithm and finally

generate the ring signature. The ring signatures

generated by HMAC algorithm are not only able to

preserve identity privacy but also able to support

blockless verifiability. Hence, the public verifier need

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

316

not download the entire data, which may be inefficient

as it costs memory wastage and time, instead he can just

verify the ring signatures on each block and check for

the correctness of the data.

Fig 3: Architecture Diagram

2.5 Batch Auditing

At times, a public verifier may need to verify the

integrity of multiple auditing tasks in a very short time.

Directly verifying these tasks separately would be

inefficient. By using the properties of bilinear maps, we

can further extend our implementation to support batch

auditing, which can verify the correctness of multiple

auditing tasks simultaneously and improve the efficiency

of public auditing. Based on the correctness of Equation

(6), the correctness of batch auditing in Equation (7) can

be presented as

which can save the public verifier about (d -1)B pairing

operations in total compared to Equation (7). Note that

batch auditing will fail if at least one incorrect auditing

proof exists in all the B auditing proofs. To allow most

of auditing proofs to still pass the verification when

there exists only a small number of incorrect auditing

proofs, we can utilize binary search [5] during batch

auditing. More specifically, once the batch auditing of

the B auditing proofs fails, the public verifier divides the

set of all the B auditing proofs into two subsets, where

each subset contains a number of B=2 auditing proofs.

Then the public verifier rechecks the correctness of

auditing proofs in each subset using batch auditing. If

the verification result of one subset is correct, then all

the auditing proofs in this subset are all correct.

Otherwise, this subset is further divided into two sub

subsets, and the public verifier rechecks the correctness

of auditing proofs in each sub subset with batch auditing

until all the incorrect auditing proofs are found. Clearly,

when the number of incorrect auditing proofs increases,

the public verifier needs more time to distinguish all the

incorrect auditing proofs, and the efficiency of batch

auditing will be reduced. Experimental result in B shows

that, when less than 12 percent of all the B auditing

proofs are incorrect, batching auditing is still more

efficient than verifying all the B auditing proofs one by

one.

III. RESULTS AND DISCUSSION

PERFORMANCE

In this section, we first analyze the computation and

communication costs of our implementation, and then

evaluate the performance of the same in experiments.

A. Computation Cost

During an auditing task, the public verifier first

generates some random values to construct an auditing

challenge, which only introduces a small cost in

computation. Then, after receiving the auditing

challenge, the cloud server needs to compute an auditing

proof {ƛ, μ, Φ, {idj}j€J}. Based on the description in

Section 5, the computation cost of calculating an

auditing proof is about (k+dc)ExpG1 + dcMulG1 +

ckMulZp + kHashZp , where ExpG1 denotes the cost of

computing one exponentiation in G1, MulG1 denotes the

cost of computing one multiplication in G1, MulZp and

HashZp respectively denote the cost of computing one

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

317

multiplication and one hashing operation in Zp. To

check the correctness of an auditing proof {ƛ, μ, Φ,

{idj}j€J, a public verifier audits it with Equation (6). The

total cost of verifying this auditing proof is about (2k +

c)ExpG1 + (2k + c) MulG1 + dMulGT + cHashG1 + (d

+ 2)Pair. We use Pair to denote the cost of computing

one pairing operation on e : G1 * G2 GT .

B. Communication Cost

The communication cost is mainly introduced by two

aspects: the auditing challenge and auditing proof. For

each auditing challenge {j, yj}j€J , the communication

cost is c(|q| + |n|) bits, where |q| is the length of an

element of Zq and |n| is the length of an index. Each

auditing proof {ƛ, μ, Φ, {idj}j€J} contains (k + d)

elements of G1, k elements of Zp and c elements of Zq,

therefore the communication cost of one auditing proof

is (2k + d)|p| + c|q| bits.

C. Experimental Results

We now evaluate the efficiency of our method. In our

experiments, we utilize the GNU Multiple Precision

Arithmetic (GMP) library and Pairing Based

Cryptography (PBC) library. All the following

experiments are based on C and tested on a 2.26 GHz

Linux system over 1,000 times. Because our

implementation needs more exponentiations than pairing

operations during the process of auditing, the elliptic

curve we choose in our experiments is an MNT curve

with a base field size of 159 bits, which has a better

performance than other curves on computing

exponentiations. We choose |p| = 160 bits and |q| = 80

bits. We assume the total number of blocks in shared

data is n = 1,000, 000 and |n| = 20 bits. The size of

shared data is 2GB. To keep the detection probability

greater than 99 percent, we set the number of selected

blocks in an auditing task as c = 460 [9]. If only 300

blocks are selected, the detection probability is greater

than 95 percent. We also assume the size of the group d

€ [2, 20] in the following experiments. Certainly, if a

larger group size is used, the total computation cost will

increase due to the increasing number of exponentiations

and pairing operations.

Fig 4: Performance of signature generation

Performance of Signature Generation. According to

Section 5, the generation time of a ring signature on a

block is determined by the number of users in the group

and the number of elements in each block. As illustrated

in Figs. 10a and 10b, when k is fixed, the generation

time of a ring signature is linearly increasing with the

size of the group; when d is fixed, the generation time of

a ring signature is linearly increasing with the number of

elements in each block. Specifically, when d = 10 and k

= 100, a user in the group requires about 37 mill seconds

to compute a ring signature on a block in shared data.

Performance of Auditing. Based on our proceeding

analyses, the auditing performance under different

detection probabilities is illustrated in Figs. 11a and 12b,

and Table 2. As shown in Fig. 11a, the auditing time is

linearly increasing with the size of the group. When c =

300, if there are two users sharing data in the cloud, the

auditing time is only about 0:5 seconds; when the

number of group member increases to 20, it takes about

2:5 seconds to finish the same auditing task. The

communication cost of an auditing task under different

parameters is presented in Figs. 12a and 12b. Compared

to the size of entire shared data, the communication cost

that a public verifier consumes in an auditing task is

very small. It is clear in Table 2 that when maintaining a

higher detection probability, a public verifier needs to

consume more computation and communication

overhead to finish the auditing task. Specifically, when c

= 300, it takes a public verifier 1:32 seconds to audit the

correctness of shared data, where the size of shared data

is 2GB; when c = 460, a public verifier needs 1:94

seconds to verify the integrity of the same shared data.

Fig 5 : Performance of auditing time

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

318

As we discussed in the previous section, the privacy

performance of our mechanism depends on the number

of members in the group. Given a block in shared data,

the probability that a public verifier fails to reveal the

identity of the signer is 1 – 1/d, where d ≤ 2. Clearly,

when the number of group members is larger, our

mechanism has a better performance in terms of privacy.

As we can see from Fig. 13a, this privacy performance

increases with an increase of the size of the group.

Performance of Batch Auditing. As we discussed in

Section 5, when there are multiple auditing proofs, the

public verifier can improve the efficiency of verification

by performing batch auditing. In the following

experiments, we choose c = 300, k = 100 and d = 10.

Compared to verifying a number of B auditing proofs

one by one, if these B auditing proofs are for different

groups, batching auditing can save 2:1 percent of the

auditing time per auditing proof on average (as shown in

Fig. 14a). If these B auditing tasks are for the same

group, batching auditing can save 12:6 percent of the

average auditing time per auditing proof (as shown in

Fig. 14b). Now we evaluate the performance of batch

auditing when incorrect auditing proofs exist among the

B auditing proofs. As we mentioned in Section 5, we can

use binary search in batch auditing, so that we can

distinguish the incorrect ones from the B auditing

proofs.

However, the increasing number of incorrect auditing

proofs will reduce the efficiency of batch auditing. It is

important for us to find out the maximal number of

incorrect auditing proofs exist in the B auditing proofs,

where the batch auditing is still more efficient than

separate auditing.

In this experiment, we assume the total number of

auditing proofs in the batch auditing is B = 128 (because

we leverage binary search, it is better to set B as a power

of 2), the number of elements in each block is k = 100

and the number of users in the group is d = 10. Let A

denote the number of incorrect auditing proofs. In

addition, we also assume that it always requires the

worst case algorithm to detect the incorrect auditing

proofs in the experiment.

Fig 6 : Performance of privacy and batch auditing

According to Equation (7) and (8), the extra

computation cost in binary search is mainly introduced

by extra pairing operations. As shown in Fig. 14a, if all

the 128 auditing proofs are for different groups, when

the number of incorrect auditing proofs is less than 16

(12 percent of all the auditing proofs), batching auditing

is still more efficient than separate auditing.

Similarly, in Fig. 14b, if all the auditing proofs are for

the same group, when the number of incorrect auditing

proofs is more than 16, batching auditing is less efficient

than verifying these auditing proofs separately.

Fig 7: Efficiency of batch auditing with incorrect proofs

Provable data possession (PDP), proposed by Ateniese

et al. [9], allows a verifier to check the correctness of a

client‟s data stored at an untrusted server. By utilizing

RSAbased homomorphic authenticators and sampling

strategies, the verifier is able to publicly audit the

integrity of data without retrieving the entire data, which

is referred to as public auditing. Unfortunately, their

mechanism is only suitable for auditing the integrity of

personal data. Juels and Kaliski [32] defined another

similar model called Proofs of Retrievability (POR),

which is also able to check the correctness of data on an

untrusted server. The original file is added with a set of

randomly valued check blocks called sentinels. The

verifier challenges the untrusted server by specifying the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

319

positions of a collection of sentinels and asking the

untrusted server to return the associated sentinel values.

Shacham and Waters [10] designed two improved

schemes. The first scheme is built from BLS signatures

[27], and the second one is based on pseudorandom

functions.

To support dynamic data, Ateniese et al. [33] presented

an efficient PDP mechanism based on symmetric keys.

This mechanism can support update and delete

operations on data, however, insert operations are not

available in this mechanism. Because it exploits

symmetric keys to verify the integrity of data, it is not

public verifiable and only provides a user with a limited

number of verification requests. Wang et al. [12] utilized

Merkle Hash Tree and BLS signatures [27] to support

dynamic data in a public auditing mechanism. Erway et

al. [11] introduced dynamic provable data possession

(DPDP) by using authenticated dictionaries, which are

based on rank information. Zhu et al. [15] exploited the

fragment structure to reduce the storage of signatures in

their public auditing mechanism. In addition, they also

used index hash tables to provide dynamic operations on

data. The public mechanism proposed by Wang et al. [5]

and its journal version [18] are able to preserve users‟

confidential data from a public verifier by using random

maskings. In addition, to operate multiple auditing tasks

from different users efficiently, they extended their

mechanism to enable batch auditing by leveraging

aggregate signatures [21].

Wang et al. [13] leveraged homomorphic tokens to

ensure the correctness of erasure codesbased data

distributed on multiple servers. This mechanism is able

not only to support dynamic data, but also to identify

misbehaved servers. To minimize communication

overhead in the phase of data repair, Chen et al. [14]

also introduced a mechanism for auditing the correctness

of data under the multiserver scenario, where these data

are encoded by network coding instead of using erasure

codes. More recently, Cao et al. [16] constructed an LT

codesbased secure and reliable cloud storage

mechanism. Compare to previous work [13], [14], this

mechanism can avoid high decoding computation cost

for data users and save computation resource for online

data owners during data repair.

Related Works

By utilizing RSAbased homomorphic authenticators and

sampling strategies, the verifier is able to publicly audit

the integrity of data without retrieving the entire data,

which is referred to as public auditing. Unfortunately,

their mechanism is only suitable for auditing the

integrity of personal data.

IV. CONCLUSION

In this paper, we propose our method, a

privacypreserving public auditing mechanism for shared

data in the cloud. We utilize ring signatures to construct

homomorphic authenticators, so that a public verifier is

able to audit shared data integrity without retrieving the

entire data, yet it cannot distinguish who is the signer on

each block. To improve the efficiency of verifying

multiple auditing tasks, we further extend our

mechanism to support batch auditing.

V. REFERENCES
[1] B. Wang B Li, and H. Li, “Oruta: Privacy-Preserving Public

Auditing for Shared Data in the Cloud” Proc IEEE Fifth Int‟l

Conf. Cloud Computing pp, 295-302, 2012

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.

Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.

Zaharia, "A View of Cloud Computing" Comm ACM, Vol 53,

no. 4, pp. 50,58, April 2010

[3] K. Ren C. Wand abd Q. Wang, "Security Challanges for the

Public Cloud" IEEE Internet Computing, Vol. 16, no. 1, pp. 69-

73, 2012

[4] F. Song E. Shi, I. Fischer and U. Shankar, "Cloud Data

Protection for the Masses", Computer, vol.45, no. 1. 39-45,2012

[5] C. Wang, Q. Wang, K. Ren, and W. Lou, "Privacy-Preserving

Public Auditing for Data Storage Security in Cloud Computing"

Proc. IEEE INFOCOM, pp. 525-533,2010.

[6] B. Wang, M. Li, S.S. Chow, and H. Li, "Computing Encrypted

Cloud Data Efficiently under Multiple Keys" Proc. IEEE Conf.

Comm. and Network Security(CNS'13), pp. 90-99, 2013

[7] R. Rivest, A. Shamir, and L. Adleman, "A Method for

Obtaining Digital Signatures and Public Key Cryptosystems"

Comm. ACM, vol.21m no2, pp.120-126,1978

[8] The MD5 Message-Digest Algorithm (RFC1321).

https://tools.ieft.org/html/rfc1321,2014

[9] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song "Provable Data Possession at Untrusted

Stores" Proc. 14th ACM Conf. Computer and Comm Security

(CCS ' 07), pp. 598-610, 2007

[10] H Shacham and B. Waters, "Compact Proofs of Retrivability"

Proc. 14th Int'l Conf. THeory and Application of Crytology and

Information Security: Advances in Cryptology

(ASIACRYPT'08), pp.90-107, 2008.

https://tools.ieft.org/html/rfc1321,2014

